Algebra II
 8-6

Some Useful Theorems

Theorem -

How many solutions do each of the following have?

$$
\begin{aligned}
& P(x)=x^{3}+5 x^{2}-7 x+1 \\
& P(x)=x^{12}-3 x^{4}+8 x \\
& P(x)=4+3 x^{5}-7 x^{6}+11 x^{9}-131 x^{2}
\end{aligned}
$$

Conjugate Root Theorem -

All but one of the equations solutions are given. Find the remaining root. (pg 380)

$$
\text { 5) } x^{3}-3 x^{2}+4 x-12 \quad\{3,2 i
$$

Find a cubic equation with integral coefficients that has the given roots.

1) $\{-1,5 i$,

A root of the equation is given. Solve the equation.
9) $x^{3}+x-10=0 \quad\{-1+2 i, \quad\}$

Descartes' Rule of Signs -

*1) $3 x^{5}-4 x^{3}-7 x^{2}+11 x+9=0$
*2) $6 x^{6}+7 x^{5}-x^{4}+2 x^{2}-x-1=0$

List all the possibilities for the nature of the roots of each equation.
13) $x^{4}+3 x^{2}-4=0$
19) $x^{5}-x^{3}-x^{2}+x-2=0$

